Ограничение тока заряда конденсатора. Конденсаторы

Часто в различных источниках питания возникает задача ограничить стартовый бросок тока при включении. Причины могут быть разные – быстрый износ контактов реле или выключателей, сокращение срока службы конденсаторов фильтра итд. Такая задача недавно возникла и у меня. В компьютере я использую неплохой серверный блок питания, но за счет неудачной реализации секции дежурного режима, происходит сильный ее перегрев при отключении основного питания. Из-за этой проблемы уже 2 раза пришлось ремонтировать плату дежурного режима и менять часть электролитов, находящихся рядом с ней. Решение было простое – выключать блок питания из розетки. Но оно имело ряд минусов – при включении происходил сильный бросок тока через высоковольтный конденсатор, что могло вывести его из строя, кроме того, уже через 2 недели начала обгорать вилка питания блока. Решено было сделать ограничитель бросков тока. Параллельно с этой задачей, у меня была подобная задача и для мощных аудио усилителей. Проблемы в усилителях те же самые – обгорание контактов выключателя, бросок тока через диоды моста и электролиты фильтра. В интернете можно найти достаточно много схем ограничителей бросков тока. Но для конкретной задачи они могут иметь ряд недостатков – необходимость пересчета элементов схемы для нужного тока; для мощных потребителей – подбор силовых элементов, обеспечивающих необходимые параметры для расчетной выделяемой мощности. Кроме того, иногда нужно обеспечить минимальный стартовый ток для подключаемого устройства, из-за чего сложность такой схемы возрастает. Для решения этой задачи есть простое и надежное решение – термисторы.

Рис.1 Термистор

Термистор – это полупроводниковый резистор, сопротивление которого резко изменяется при нагреве. Для наших целей нужны термисторы с отрицательным температурным коэффициентом – NTC термисторы. При протекании тока через NTC термистор он нагревается и его сопротивление падает.


Рис.2 ТКС термистора

Нас интересуют следующие параметры термистора:

    Сопротивление при 25˚С

    Максимальный установившийся ток

Оба параметра есть в документации на конкретные термисторы. По первому параметру мы можем определить минимальный ток, который пройдет через сопротивление нагрузки при подключении ее через термистор. Второй параметр определяется максимальной рассеиваемой мощностью термистора и мощность нагрузки должна быть такой, что бы средний ток через термистор не превысил это значение. Для надежной работы термистора нужно брать значение этого тока меньшее на 20 процентов от параметра, указанного в документации. Казалось бы, что проще – подобрать нужный термистор и собрать устройство. Но нужно учитывать некоторые моменты:

  1. Термистор достаточно долго остывает. Если выключить устройство и сразу включить опять, то термистор будет иметь низкое сопротивление и не выполнит свою защитную функцию.
  2. Нельзя соединять термисторы параллельно для увеличения тока – из-за разброса параметров ток через них будет сильно различаться. Но вполне можно соединять нужное к-во термисторов последовательно.
  3. При работе происходит сильный нагрев термистора. Греются также элементы рядом с ним.
  4. Максимальный установившийся ток через термистор должен ограничиваться его максимальной мощностью. Этот параметр указан в документации. Но если термистор используется для ограничения коротких бросков тока (например, при первоначальном включении блока питания и зарядке конденсатора фильтра), то импульсный ток может быть больше. Тогда выбор термистора ограничен его максимальной импульсной мощностью.

Энергия заряженного конденсатора определяется формулой:

E = (C*Vpeak²)/2

где E – энергия в джоулях, C – емкость конденсатора фильтра, Vpeak – максимальное напряжение, до которого зарядится конденсатор фильтра (для наших сетей можно взять значение 250В*√2 = 353В).

Если в документации указана максимальная импульсная мощность, то исходя из этого параметра можно подобрать термистор. Но, как правило, этот параметр не указан. Тогда максимальную емкость, которую безопасно можно зарядить термистором, можно прикинуть по уже рассчитанным таблицам для термисторов стандартных серий.

Я взял таблицу с параметрами термисторов NTC фирмы Joyin. В таблице указаны:

Rном - номинальное сопротивление термистора при температуре 25°С

Iмакс - максимальный ток через термистор (максимальный установившийся ток)

Смакс - максимальная емкость в тестовой схеме, которую разряжают на термистор без его повреждения (тестовое напряжение 350v)

Как проводится тестовое испытание, можно посмотреть на седьмой странице.

Несколько слов о параметре Смакс – в документации показано, что в тестовой схеме конденсатор разряжается через термистор и ограничительный резистор, на котором выделяется дополнительная энергия. Поэтому максимальная безопасная емкость, которую сможет зарядить термистор без такого сопротивления, будет меньше. Я поискал информацию в зарубежных тематических форумах и посмотрел типовые схемы с ограничителями в виде термисторов, на которые приведены данные. Исходя из этой информации, можно взять коэффициент для Смакс в реальной схеме 0.65, на который умножить данные из таблицы.

Наименование

Rном,

Iмакс,

Смакс,

д иаметр 8мм

диаметр 10мм

диаметр 13мм

диаметр 15мм

диаметр 20мм

Таблица параметров NTC термисторов фирмы Joyin

Соединяя несколько одинаковых NTC термисторов последовательно, мы уменьшаем требования к максимальной импульсной энергии каждого из них.

Приведу пример. Например, нам необходимо подобрать термистор для включения блока питания компьютера. Максимальная мощность потребления компьютера – 700 ватт. Мы хотим ограничить стартовый ток величиной 2-2.5А. В блоке питания установлен конденсатор фильтра 470мкФ.

Считаем действующее значение тока:

I = 700Вт/220В = 3.18А

Как писал выше, для надежной работы термистора, выберем максимальный установившийся ток из документации на 20% больше этой величины.

Iмакс = 3.8А

Считаем нужное сопротивление термистора для стартового тока 2.5А

R = (220В*√2)/2.5А = 124 Ом

Из таблицы находим нужные термисторы. 6 штук последовательно включенных термисторов JNR15S200L подходят нам по Iмакс , общему сопротивлению. Максимальная емкость, которую они могут зарядить будет равна 680мкФ*6*0.65=2652мкФ, что даже больше, чем нам нужно. Естественно, при понижении Vpeak , понижаются и требования к максимальной импульсной мощности термистора. Зависимость у нас от квадрата напряжения.

И последний вопрос по поводу выбора термисторов. Что, если мы подобрали необходимые по максимальной импульсной мощности термисторы, но они нам не подходят по Iмакс (постоянная нагрузка для них слишком велика), либо в самом устройстве нам не нужен источник постоянного нагрева? Для этого мы применим простое решение – добавим в схему еще один выключатель параллельно термистору, который включим после зарядки конденсатора. Что я и сделал в своем ограничителе. В моем случае параметры такие – максимальная мощность потребления компьютера 400вт, ограничение стартового тока – 3.5А, конденсатор фильтра 470мкФ. Я взял 6 штук термисторов 15d11 (15 ом). Схема приведена ниже.


Рис. 3 Схема ограничителя

Пояснения по схеме. SA1 отключает фазовый провод. Светодиод VD2 служит для индикации работы ограничителя. Конденсатор C1 сглаживает пульсации и светодиод не мерцает с частотой сети. Если он вам не нужен, то уберите из схемы C1, VD6, VD1 и просто соедините параллельно светодиод и диод по аналогии элементов VD4, VD5. Для индикации процесса зарядки конденсатора, параллельно термисторам включен светодиод VD4. В моем случае при зарядке конденсатора блока питания компьютера, весь процесс занимает менее секунды. Итак, собираем.


Рис.4 Набор для сборки

Индикацию питания я собрал непосредственно в крышке от выключателя, выкинув из нее китайскую лампу накаливания, которая бы прослужила недолго.


Рис. 5 Индикация питания


Рис.6 Блок термисторов


Рис. 7 Собранный ограничитель

На этом можно было бы закончить, если бы через неделю работы не вышли из строя все термисторы. Выглядело это так.


Рис. 8 Выход из строя NTC термисторов

Несмотря на то, что запас по допустимой величине емкости был очень большой – 330мкФ*6*0.65=1287мкФ.

Термисторы брал в одной известной фирме, причем разных номиналов – все брак. Производитель неизвестен. Либо китайцы заливают в большие корпуса термисторы меньших диаметров, либо качество материалов очень плохое. В итоге купил даже меньшего диаметра - SCK 152 8мм. То же Китай, но уже фирменные. По нашей таблице допустимая емкость 100мкФ*6*0.65=390мкФ, что даже немного меньше, чем нужно. Тем не менее, все работает отлично.

Ограничение зарядного тока конденсатора сетевого выпрямителя ИИП

Одна из важных проблем в сетевых импульсных источниках питания - ограничение тока зарядки сглаживающего конденсатора большой емкости, установленного на выходе сетевого выпрямителя. Его максимальное значение, определяемое сопротивлением зарядной цепи, фиксировано для каждого конкретного устройства, но во всех случаях весьма значительно, что может привести не только к перегоранию предохранителей, но и к выходу из строя элементов входных цепей. Автор статьи предлагает простой способ решения указанной проблемы.

Решению задачи ограничения пускового тока посвящено немало работ, в которых описаны устройства так называемого "мягкого" включения . Один из широко применяемых способов - использование зарядной цепи с нелинейной характеристикой. Обычно конденсатор заряжают через токоограничивающий резистор до рабочего напряжения, а затем этот резистор замыкают электронным ключом. Наиболее простым получается подобное устройство при использовании тринистора .

На рисунке показана типовая схема входного узла импульсного источника питания. Назначение элементов, напрямую не относящихся к предлагаемому устройству (входной фильтр, сетевой выпрямитель), в статье не описано, поскольку эта часть выполнена стандартно .

Сглаживающий конденсатор С7 заряжается от сетевого выпрямителя VD1 через токоограничивающий резистор R2, параллельно которому включен тринистор VS1. Резистор должен отвечать двум требованиям: во-первых, его сопротивление должно быть достаточным для того, чтобы ток через предохранитель за время зарядки не привел к его перегоранию, и во-вторых, мощность рассеяния резистора должна быть такой, чтобы он не вышел из строя до полной зарядки конденсатора С7.

Первому условию удовлетворяет резистор сопротивлением 150 Ом. Максимальный ток зарядки при этом примерно равен 2 А. Экспериментально установлено, что два резистора сопротивлением 300 Ом и мощностью 2 Вт каждый, включенных параллельно, отвечают второму требованию.

Емкость конденсатора С7 660 мкФ выбрана из условия, что амплитуда пульсаций выпрямленного напряжения при максимальной мощности нагрузки 200 Вт не должна превышать 10 В. Номиналы элементов С6 и R3 рассчитывают следующим образом. Конденсатор С7 зарядится через резистор R2 практически полностью (95 % от максимального напряжения) за время t=3R2·C7=3·150·660·10-6 -0,3 с. В этот момент должен открыться тринистор VS1.

Тринистор включится, когда напряжение на его управляющем электроде достигнет 1 В, значит, конденсатор С6 должен за 0,3 с зарядиться до этого значения. Строго говоря, напряжение на конденсаторе растет нелинейно, но поскольку значение 1 В составляет около 0,3 % от максимально возможного (примерно 310 В), то этот начальный участок допустимо считать практически линейным, поэтому емкость конденсатора С6 рассчитывают по простой формуле: C=Q/U, где Q=l·t - заряд конденсатора; I - ток зарядки.

Определим ток зарядки. Он должен быть несколько больше тока управляющего электрода, при котором включается тринистор VS1. Выбираем тринистор КУ202Р1, аналогичный известному КУ202Н, но с меньшим током включения. Этот параметр в партии из 20 тринисторов находился в пределах от 1,5 до 11 мА, причем у подавляющего большинства его значение не превышало 5 мА. Для дальнейших экспериментов выбран прибор с током включения 3 мА. Выбираем сопротивление резистора R3 равным 45 кОм. Тогда ток зарядки конденсатора С6 равен 310 В/45 кОм = 6,9 мА, что в 2,3 раза больше тока включения тринистора.

Вычислим емкость конденсатора С6: С=6,9·10-3·0,3/1-2000 мкФ. В источнике питания использован меньший по габаритам конденсатор емкостью 1000 мкФ на напряжение 10 В. Время его зарядки уменьшилось вдвое, примерно до 0,15 с. Пришлось уменьшить постоянную времени цепи зарядки конденсатора С7 - сопротивление резистора R2 уменьшено до 65 Ом. При этом максимальный зарядный ток в момент включения равен 310 В/65 Ом = 4,8 А, но уже через время 0,15 с ток уменьшится приблизительно до 0,2 А.

Известно, что плавкий предохранитель обладает значительной инерционностью и может без повреждения пропускать короткие импульсы, намного превышающие его номинальный ток. В нашем случае среднее значение за время 0,15 с составляет 2,2 А и предохранитель переносит его "безболезненно". Два резистора сопротивлением 130 Ом и мощностью 2 Вт каждый, включенных параллельно, также справляются с такой нагрузкой. За время зарядки конденсатора С6 до напряжения 1 В (0,15 с) конденсатор С7 зарядится на 97 % от максимума.

Таким образом, все условия безопасной работы соблюдены. Длительная эксплуатация импульсного источника питания показала высокую надежность работы описанного узла. Следует отметить, что плавное в течение 0,15 с повышение напряжения на сглаживающем конденсаторе С7 благоприятно сказывается на работе как преобразователя напряжения, так и нагрузки.

Резистор R1 служит для быстрой разрядки конденсатора С6 при отключении блока питания от сети. Без него этот конденсатор разряжался бы значительно дольше. Если в этом случае быстро включить блок питания после его выключения, то тринистор VS1 может оказаться еще открытым и предохранитель сгорит.

Резистор R3 состоит из трех, включенных последовательно, сопротивлением 15 кОм и мощностью 1 Вт каждый. На них рассеивается мощность около 2 Вт. Резистор R2 - два параллельно включенных МЛТ-2 сопротивлением по 130 Ом, а конденсатор С7 - два, емкостью по 330 мкФ на номинальное напряжение 350 В, соединенных параллельно. Выключатель SA1 - тумблер Т2 или кнопочный переключатель ПкН41-1. Последний предпочтительнее, поскольку позволяет отключать от сети оба проводника. Тринистор КУ202Р1 снабжен алюминиевым теплоотводом размерами 15x15x1 мм.

Литература

  1. Источники вторичного электропитания. Справочное пособие. - М.: Радио и связь, 1983.
  2. . Эраносян С. А. Сетевые блоки питания с высокочастотными преобразователями. - Л.: Энергоатомиздат, 1991.
  3. 3. Фролов А. Ограничение тока зарядки конденсатора в сетевом выпрямителе. - Радио, 2001, № 12, с. 38, 39, 42.
  4. 4. Мкртчян Ж. А. Электропитание электронно-вычислительных машин. - М.: Энергия, 1980.
  5. 5. Интегральные микросхемы зарубежной бытовой видеоаппаратуры. Справочное пособие. - С.-Пб,: Лань Виктория, 1996.

JB Castro-Miguens, Madrid

В момент включения импульсного источника питания, например, блока питания компьютера, сглаживающий конденсатор выпрямителя полностью разряжен. Бросок зарядного тока, в особенности в том случае, когда емкость конденсатора велика, может привести к срабатыванию автоматов защиты сети, или, даже, к выходу из строя выпрямительных диодов.

Несмотря на то, что эквивалентное последовательное сопротивление конденсатора, а также сопротивление и индуктивность проводов уменьшают бросок тока, пиковые значения могут достигать десятков ампер. Эти броски приходится принимать во внимание при выборе диодов выпрямителя, но наиболее заметно их влияние на срок службы конденсатора. Схема, позволяющая ограничивать выбросы тока при включении, показана на Рисунке 1.

Если в момент включения мгновенное значение выпрямленного переменного напряжения сети больше 14 В, MOSFET транзистор Q 1 будет включен, вследствие чего IGBT транзистор Q 2 выключен, и конденсатор не заряжается.

Если же выпрямленное напряжение меньше, чем напряжение на конденсаторе плюс 14 В (V 1 = V IN − V OUT ≤ 14 В), Q1 выключен, а Q 2 включается через резистор R 3 , подключая конденсатор и нагрузку (R LOAD) к выпрямителю. Соответственно, Q 2 остается включенным, а Q 1 перестает оказывать какое-либо влияние на работу схемы.

В стационарном состоянии, когда напряжение на конденсаторе сравняется с выпрямленным переменным напряжением, Q 1 выключен, а Q 2 включен, и заряду конденсатора ничто не препятствует.

Ограничитель тока позволяет дополнить схему защитой от перенапряжения. Если выпрямленное выходное напряжение превысит 380 В, напряжение между выходом опорного напряжения и анодом микросхемы IC 1 будет больше ее внутреннего опорного напряжения 2.495 В, вследствие чего, напряжение анод-катод упадет примерно до 2 В. Ток резистора R 3 потечет в катод, и Q 2 закроется.

Когда выпрямленное сетевое напряжение меньше 380 В, катодный ток TL431 практически отсутствует. Вследствие этого, Q2 включается через R3 и подключает конденсатор и R LOAD к двухполупериодному выпрямителю (при условии V 1 = V IN − V OUT ≤ 14 В).

Мощность, рассеиваемая компонентами схемы, очень незначительна. При входном напряжении 230 В с.к.з. и мощности нагрузки до 500 Вт в качестве Q 2 можно использовать GP10NC60KD .

  • Фактическа схема обеспечивает подключение фильтрующих конденсаторов при переходе питающего напряжения через ноль. Не проще-ли для этого использовать оптосимистор (оптореле) с функцией с фонкцией включения при ноле напряжения. При большой ёмкости конденсаторов фильта ни эта схема, ни оптореле не спасут от броска тока.
  • Схема, конечно, хорошая и похожа на один из вариантов dv/dt ограничителей, описанных в "AN1542 Active Inrush Current Limiting Using MOSFET"s". Также полезен аппноут "AN4606 Inrush-current limiter circuits (ICL) with Triacs and Thyristors". В самой схеме куда полезнее была бы не защита от перенапряжения, а защита от короткого замыкания в нагрузке. К тому же, есть такие типы нагрузок, которые нельзя просто так отключить от сети. Т.е. скачёк сетевого напряжения бывает менее страшен, чем его моментальное пропадание. Пожалуй, проблема зарядки входных емкостей характерна для всех SMPS мощностью от 200Вт. Большой цветник решений можно увидеть в схемах сварочных инверторов, частотников и другом технологическом оборудовании, где так или иначе присутствует звено постоянного тока большой мощности. Сложность схем ограничителей (почему-то всегда пишут "схем плавного пуска") определяется бюджетом и фантазией разработчиков. Небольшая иерархия: "народные" средства - это резистор или дроссель, для небольших мощностей термистор; вслед за этим - схемы, подобные описанной в статье (на тиристоре или транзисторе); затем - управляемые выпрямители; ну а на самой верхушке по моему мнению - корректоры коэффициента мощности (также обобщающее название для полностью управляемых выпрямителей или неизолированных DC/DC преобразователей). И относительно приведённой схемы. Передо мной лежит блок питания, на входе которого стоит 4000мкФ*450В. Ограничитель - 10Вт резистор, который шунтируется мощным 60-амперным пускателем. Время зарядки емкостей около 12 секунд. Оно классически задаётся RC-цепью в базе транзистора, который коммутирует обмотку маломощного реле, а то свою очередь включает пускатель. Как только резистор шунтирован, в схему управления через оптрон подаётся сигнал о состоянии выпрямителя "Готово". Поставив тиристор или IGBT согласно описанному решению (с большим запасом, т.к. ток несинусоидален) несложно будет организовать схему управления. В случае тиристора использовав оптимальный вариант - при переходе сети через 0, как писал lllll. Но вот незадача: ток потребления из сети при полной нагрузке около 30Ампер. А это означает, что в схему добавится "нагреватель", мощностью 50-100Вт. Речь, конечно, не об экономии электроэнергии:-). Но невольно задумаешься - так ли уж плох электромеханический "плавный пуск".
  • Схема из цикла, "когда нечем заняться, то...". Для низкой мощности тема не актуальна. Ни разу не видел ограничителей, но как показывает практика ничего из строя не выходит и автоматы не срабатывают. Для средней и большой мощности - устарело, сейчас нормами требуют уже не ограничители тока, а корректоры коэффициента мощности. В случае использования конденсаторов большой ёмкости (например в УНЧ), обычно используют плавную зарядку через токоограничительный резистор, который через некоторое время после включения закорачивается.
  • а это разве не ограничитель бросков тока для нагрузок средней мошности? AMC ваш пост из цикла "когда нечего написать а руки чешутся..."

Схема предназначена для защиты от броска тока заряда при включении незаряженного конденсатора в бортовую сеть. Кто не пробовал включать незаряженный фарадник в сеть без ограничивающего резистора - лучше не надо... Как минимум, обгорят контакты.

При включении разряженной емкости в сеть емкость С1 разряжена, Т1 (n-МОП ключ с низким сопротивлением канала) закрыт. Емкость С2 (тот самый фарадник) заряжается через низкоомный R5. Т2 открывается практически мгновенно, шунтирую на землю C1 и затвор Т1. Когда потенциал отрицательной клеммы С2 опустится ниже 1В (зарядка до Uакб - 1В), Т2 закрывается, С1 плавно заряжается до примерно 9/10 Uакб, открывая T1. Постоянная времени R2C1 достаточно велика, так что скачок тока Т1 (дозарядка С2 на +1В до Uaкб) не превышает допустимого для Т1.

В дальнейшем отрицательная клемма С2 постоянно замкнута на землю через Т1, НЕЗАВИСИМО ОТ НАПРАВЛЕНИЯ ТОКА Т1 (как в прямом - от стока к истоку, так и в обратном направлении). Ничего страшного в "переворачивании" ОТКРЫТОГО МДП транзистора нет. При выборе достаточно хорошо проводящего транзистора весь обратный ток потечет через канал, а встроенный обратный диод не откроется, так как падение напряжения на канале в разы меньше требуемых для открытия 0.5-0.8 В. Кстати, есть целый класс МДП приборов (т.н. FETKY), предназначенных именно для работы в обратном направлении (синхронные выпрямители), у них встроенный диод зашунтирован дополнительным силовым диодом Шоттки.

Расчет: для транзистора IRF1010 (Rds=0.012 Ом) падение напряжения 0.5 Ом будет достигнуто только при токе канала 40А (P=20Вт). Для четырех таких транзисторов в параллель и том же токе разряда 40А - на каждом транзисторе будет рассеиваться 0.012*(40/4)^2 = 1.2 Вт, т.е. радиаторы им не потребуются (тем более что 1.2Вт будет рассеиваться только при перепадах тока потребления но не постоянно).

При плотном монтаже (у Вас много места для лишнего радиатора?) - целесообразно параллелить малогабаритные (корпус TO251, DIP4) транзисторы, вообще не предусматривающие радиаторы, исходя из соотношения ток(мощность) потребления усилителя - Rds - предельная рассеиваемая мощность. Поскольку Pds max обычно равна 1Вт (800 мВт для DIP4), количество n транзисторов (c Rds каждого) для усилителя с выходной мощность Pвых должно быть не менее n > 1/6 * Pвых * sqrt(Rds) при 12В питания (размерности в формуле я опустил). Фактически, с учетом кратковременности импульсов тока, n можно смело уменьшить вдвое по сравнению с данной формулой.

Резистор заряда R5 подбирается из компромисса тепловой мощности и времени заряда. При указанных 22 Ома - время заряда около 1 минуты при рассеиваемой мощности 7 Вт. Можно вместо R5 включить 12В лампочку, скажем, от поворотника. Резисторы R1, R3 - перестраховочные (разряжают емкости при отключении из сети).

Для индикации включения подключаем дополнительный инвертор (уменьшая R2). Внимание! Схема работоспособна при использовании npn транзисторов T2, T3 с h21э > 200 (КТ3102). В зависимости от яркости свечения светодиода, R1 выбираем в диапазоне 200 Ом - 1кОм.

А вот вариант схемы, в котором ключ затвора управляется сигналом REMOTE (транзисторное И). При неподключенном или выключенном REMOTE ключевой транзистор гарантированно закрыт. Светодиоды D3-D4 индицируют зарядку С1, D5-D6 - открытое состояние ключа.

Точная индикация порога напряжения сети проще всего обеспечивается ИС TL431 (КР142ЕН19) в типовом режиме компаратора напряжения (с соответсвующим делителем во входной цепи и токоограничивающем R в цепи катода).

Потери схемы во многом зависят от монтажа. Необходимо обеспечить минимальное сопротивление (и соответствующие току толщины проводов) в силовой цепи (клемма+ / С2 / T1/ клемма-). В любительской практике, думаю, делать внешние клеммы нецелесообразно - лучше сразу распаять короткие провода AWG8, которыми схема привязывается к клеммнику усилителя.

65 нанометров - следующая цель зеленоградского завода «Ангстрем-Т», которая будет стоить 300-350 миллионов евро. Заявку на получение льготного кредита под модернизацию технологий производства предприятие уже подало во Внешэкономбанк (ВЭБ), сообщили на этой неделе «Ведомости» со ссылкой на председателя совета директоров завода Леонида Реймана. Сейчас «Ангстрем-Т» готовится запустить линию производства микросхем с топологией 90нм. Выплаты по прошлому кредиту ВЭБа, на который она приобреталась, начнутся в середине 2017 года.

Пекин обвалил Уолл-стрит

Ключевые американские индексы отметили первые дни Нового года рекордным падением, миллиардер Джордж Сорос уже предупредил о том, что мир ждет повторение кризиса 2008 года.

Первый российский потребительский процесор Baikal-T1 ценой $60 запускают в массовое производство

Компания «Байкал Электроникс» в начале 2016 года обещает запустить в промышленное производство российский процессор Baikal-T1 стоимостью около $60. Устройства будут пользоваться спросом, если этот спрос создаст государство, говорят участники рынка.

МТС и Ericsson будут вместе разрабатывать и внедрять 5G в России

ПАО "Мобильные ТелеСистемы" и компания Ericsson заключили соглашения о сотрудничестве в области разработки и внедрения технологии 5G в России. В пилотных проектах, в том числе во время ЧМ-2018, МТС намерен протестировать разработки шведского вендора. В начале следующего года оператор начнет диалог с Минкомсвязи по вопросам сформирования технических требований к пятому поколению мобильной связи.

Сергей Чемезов: Ростех уже входит в десятку крупнейших машиностроительных корпораций мира

Глава Ростеха Сергей Чемезов в интервью РБК ответил на острые вопросы: о системе «Платон», проблемах и перспективах АВТОВАЗа, интересах Госкорпорации в фармбизнесе, рассказал о международном сотрудничестве в условиях санкционного давления, импортозамещении, реорганизации, стратегии развития и новых возможностях в сложное время.

Ростех "огражданивается" и покушается на лавры Samsung и General Electric

Набсовет Ростеха утвердил "Стратегию развития до 2025 года". Основные задачи – увеличить долю высокотехнологичной гражданской продукции и догнать General Electric и Samsung по ключевым финансовым показателям.